Puma, Germany Infantry Fighting Vehicles

0 comments

Schützenpanzer Puma IFV
The Puma is a German infantry fighting vehicle, currently in the pre-production stage. It will replace the aging Marder IFVs, from 2010 through 2020. Governing company is PSM Projekt System Management, a joint venture of Krauss-Maffei Wegmann and Rheinmetall Landsysteme. The Puma is one of the best-protected IFVs, while still having a high power/weight ratio. SAIC is currently offering a derivative of the Puma as its contender in the American GCV Infantry Fighting Vehicle program.

Puma
Type Infantry fighting vehicle
Place of origin Germany
Specifications
Weight 31.5 tonne, 43 tonne maximum weight with add-on armor
Length 7.4 m
Width 3.7 m (uparmored)
Height 3.1 m
Crew 3 + 6

Armor AMAP[1], modular
Primary
armament
30 mm MK30-2/ABM autocannon; 200 rounds/min rapid shot, 700 rounds/min fully automatic
Secondary
armament
5.56 mm HK MG4 machine gun; Spike LR anti-tank guided missile; 76 mm grenade launcher; Smoke-grenade launchers
Engine MTU V10 892 diesel
800 kW (1073 bhp)
Power/weight 25.4 kW/tonne
Suspension hydropneumatic
Operational
range
600 km
Speed 70 km/h

Development

The Puma (formerly also named Igel (hedgehog) and Panther) started as a follow-up project to the German mid-1990s "NGP" project (Neue Gepanzerte Plattformen, "New Armored Platforms"). Its aim was to collect ideas for a common base vehicle that could be used for a variety of tasks including that of the APC, IFV, air defense and replacing and assisting the MBT in the frontline combat role. The NGP project was ended in 2001.

The lessons learned were incorporated into the new tactical concept named neuer Schützenpanzer ("new IFV") in 1998. In 2002, the German Army (Heer) placed an order for the delivery of five pre-production vehicles and their logistics and training services at the end of 2004. On November 8, 2007 a budget of €3 billion to acquire 405 Pumas (not including the five Pumas, which were already delivered to the German Army for trials) was agreed upon.

Other nations pursue similar developments emphasizing commonality, modularity and rapid deployability based on a comparable doctrine which was also a subject of discussion within NATO. Examples of these are the American GCV Infantry Fighting Vehicle, the British FRES and the German-Dutch Boxer MRAV.

Future

Given the old age of the current Marder IFVs, and because the world market does not offer any vehicle comparable with the specifications to which the Puma is built, the acquisition of the new vehicles has been unanimously voted for by the household committee of the Bundestag, though it will only enter service from 2010 onwards.

There are provisions for hard- or softkill systems to defeat hostile ATGMs or RPGs, or for future active/reactive armor. There are also mounts and interfaces for the inclusion of ATGMs on the right side of the turret.

Its large weight reserves and the compact cabin make it very attractive for modification. Most vital integrals are situated in the front, floor and side walls which may remain unchanged during such a cabin-oriented modification.

Puma IFV Design

The Puma, while externally not very different from existing IFVs, incorporates a number of advantages and state-of-the-art technologies. The most obvious of these is the incorporated ability to flexibly mount different armour (see below for details). Another feature is the compact, one-piece crew cabin that enables direct crew interaction ("face-to-face"; like replacing the driver or gunner in case of a medical emergency) and minimizes the protected volume. The cabin is air conditioned, NBC-proof with internal nuclear and chemical sensors and has a fire suppressing system using non-toxic agents. The engine compartment has its own fire extinguishing system. The only compromise of the otherwise nearly cuboid cabin is the driver station, located in a protrusion in front of the gunner, in front of the turret.

One measure to achieve the one-piece cabin is the use of an unmanned, double-asymmetrical turret (see photo): while slightly off-center turrets are common in IFVs, the Puma's turret is on the left-hand side of the vehicle, while the main cannon is mounted on the right side of the turret and thus on the middle axis of the hull when the turret is in the forward position.

The outer hull (minus the turret) is very smooth and low to minimize bullet traps and general visual signature. The whole combat-ready vehicle in its base configuration will be air transportable in the Airbus A400M tactical airlifter. Its 3+6 persons crew capability is comparable to other vehicles of comparable weight like the US American M2 Bradley IFV, and the same as in the Marder.

Puma IFV Armament

The primary armament is a Rheinmetall 30 mm MK 30-2/ABM (Air Burst Munitions) autocannon, which has a rate of fire of 200 rounds per minute and an effective range of 3,000 m. There are currently two ammunition types, directly available via the autocannon's dual ammunition feed. One is a sub-calibre, fin-stabilised APFSDS-T (T for tracer), with high penetration capabilities, mainly for use against medium armoured vehicles. The second is a full-calibre, multi-purpose, Kinetic Energy-Timed Fuse (KETF) munition, designed with the air burst capability (depending on the fuse setting) of ejecting a cone of sub-munitions. Both ammunitions can be chosen differently from shot to shot as the weapon fires from an open bolt, meaning no cartridge is inserted until the trigger is used. The ammunition capacity is 400 rounds; 200 ready to fire and 200 in storage.

The smaller 30 x 173 mm caliber (for example in comparison to the Bofors 40 mm gun mounted on the CV9040) offers major advantages because of a much lower ammunition size and weight, and the large number of rounds ready to fire (the CV9040 offers only 24 shots per magazine).

The secondary armament is a coaxially mounted 5.56 mm HK MG4 machine gun firing at 850 rounds per minute with an effective range of 1,000 m. The ammunition capacity is 2,000 rounds; 1,000 ready to fire and 1,000 in storage. While this is a smaller weapon than the western standard of using a 7.62 mm caliber MG as secondary armament, it offers advantages because it has a higher rate of fire and the crew can use the ammunition in their individual firearms as well. In situations where the lower penetration of the 5.56 mm rounds is an issue, the high ammunition load of the main gun enables the vehicle crew to use one or two main gun rounds instead. The gun housing can also host the 7.62 mm MG3.

To combat main battle tanks and infrastructure targets such as bunkers, the German Puma vehicles will be equipped with a turret-mounted EuroSpike Spike LR missile launcher.

In addition to the usual smoke-grenade launchers with 8 shots, there is a 6-shot 76 mm launcher at the back of the vehicle for close-in defence. The main back door can be opened halfway and enables two of the passengers to scout and shoot from moderate protection.

Puma IFV Protection

The Puma was designed to easily accommodate additional armor. It was initially planned to offer three protection classes which are wholly or partly interchangeable. Protection class A is the basic vehicle, at 31.5 tons combat-ready weight air transportable in the A400M. Protection class C consists of two large side panels that cover almost the whole flanks of the vehicle and act as skirts to the tracks, a near-complete turret cover and armor plates for most of the vehicle's roof. The side panels are a mix of composite and spaced armor. It adds about 9 metric tons to the gross weight. Originally, there was also a protection class B designed for transport by rail. However, it became obvious that class C lies within the weight and dimension limits for train/ship transportation, thus class B was scrapped.

A group of 4 A400M aircraft could fly 3 class A Pumas into a theatre, with the fourth airplane transporting the class C armor kits and simple lifting equipment. Subsequently, the Pumas could be ready in armor class C within a short time.

The basic armour can resist direct hits from 14.5mm Russian rounds, the most powerful HMG cartridge in common use today (and up to twice as powerful as the western de facto standard .50 BMG cartridge) and is said to defeat simple hollow charge warheads. The front armour is able to withstand 30mm APFSDS projectiles. In protection class C, the flanks of the Puma are up-armored to about the same level of protection as is the front, while the roof armor is able to withstand artillery or mortar bomblets.

The whole vehicle is protected against heavy blast mines (up to 10kg) and projectile charges from below while still retaining 450mm ground clearance. Almost all equipment within the cabin, including the seats, has no direct contact to the floor, which adds to crew and technical safety. All cabin roof hatches are of the side-slide type which make them easier to open manually, even when they are obstructed by debris. The exhaust is mixed with fresh air and vented at the rear left side. Together with a special IR-suppressing paint, this aims at reducing the thermal signature of the IFV.

Another crew safety measure is that the main fuel tanks are placed outside of the vehicle hull itself, mounted heavily armored within the running gear carriers. While this may pose a higher penetration risk to the tanks, it is unlikely that both tanks will be penetrated at the same time, enabling the vehicle to retreat to a safer position in case of a breach. There is also a collector tank within the vehicle to which acts as a reserve tank in case of a double tank breach.The Puma is the best protected IFV today.

Puma IFV Sensors and situational awareness

The Puma offers improvements in situational awareness. The fully stabilized 360° periscope (PERI) with 6 different zoom stages offers a direct glass optic link to either the commander or the gunner. Since this is an optical line it had to be placed in the turret center, one of the reasons why the main cannon is mounted off-center on the turret. Via an additional CCD camera the picture from this line can also be fed into the on-board computer network and displayed on all electronic displays within the vehicle. Besides that, the periscope offers an optronic thermal vision mode and a wide-angle camera with 3 zoom stages to assist the driver, as well as a laser range finder. The whole array is hunter-killer capable; the commander also has 5 vision blocks.

The gunner optics, which can be completely protected with a slide hatch, are mounted coaxially to the main gun. The gunner has a thermal vision camera and laser range finder (identical to those on the PERI) and an optronic day sight, rounded off with a vision- and a glass block. The driver has 3 of them, as well as an image intensifier and one display for optronic image feeds. Even the passenger cabin has a hatch and 3 vision blocks on the rear right side of the vehicle, one of them in a rotary mount. The rear cabin also has 2 electronic displays.

All in all, the Puma has an additional five external cameras at its rear in swing-mounts for protection while not in use. Apart from the glass optic periscope view directly accessible only by the commander and gunner (but indirectly via the CCD camera), ALL optronic picture feeds can be displayed on every electronic display within the vehicle. The provisions for the rear cabin enable the passengers to be more active than previously in assisting the vehicle crew either directly through the vision blocks and hatches, or by observing one or more optronic feeds. The whole crew has access to the onboard intercom.

Puma IFV Mobility

Traditionally, IFVs are expected to interact with MBTs on the battlefield. In reality, many IFVs are not mobile enough to keep up the pace of an MBT. The Puma aims to close this gap with several key technologies. Firstly, its compact, lightweight MTU Diesel engine is unusually strong at 800kW nominal output, which may make it the most powerful engine in use on an IFV today. Even at the 43t maximum weight in protection class C, it has a higher kW/t ratio than the Leopard 2 MBT it is supposed to supplement.

The vehicle prototypes have a five-road wheel decoupled running gear and uses a hydropneumatic suspension to improve cross-country performance while reducing crew and material stress by limiting vibrations and noise. The road wheels are asymmetrical, mounted closer to each other at the front. This is to counter the front-heavy balance, inevitable because of the heavy frontal armor as well as the engine and drive train which are also situated at the front. The 500mm-wide steel tracks made by Diehl are of new construction and lighter than previous designs.

The serial production vehicles will have a symmetrical arranged six road wheel running gear as shown on released pictures by the manufacturer.

Operators

Current operator

Germany
The German Army has originally ordered 405 PUMA between 2007-present, including 5 currently in use.

Share this article :
 
Copyright © 2011. Military Weapons|Firearms|Tank|Jet Fighter|Battleship - All Rights Reserved
RSS Feeds
Powered by Military Weapons